
case of perturbations of the temperature field due to the side walls, as occurs in practice, 
and, inparticular, in the necks of vessels containing liquid nitrogen, the free-convective 
heat transfer of free convection can be evaluated by using the curve shown in Fig. 2. 

NOTATION 

ec, free convection coefficient; D, neck diameter; L, height of the neck; Ra, Rayleigh 
number; Nu, Nusselt number; Pr, Prandtl number. 
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NUMERICAL INVESTIGATIONOF LIGHT-ABSORBENT CONVECTION 

IN HORIZONTAL TUBE 

I. STEADY CONVECTION STATES IN THE FIELD OF 

CONTINUOUS LASER RADIATION 

B. P. Gerasimov, V. M. Gordienko, 
and A. P. Sukhorukov 

UDC 536.25 

The dependence of the rate of steady photoabsorptive convection in liquids, 
gases, and plasmas on the intensity of a horizontal laser beams is studied. A 
good agreement with the results of dimensional analysis is obtained. 

i. Introduction 

The propagation of laser radiation in an absorbing medium results in the latter being 
heated. The arising temperature gradients lead to the development of the convective motions 
in liquids or gases; the study of the latter was the subject of a considerable number of ar- 
ticles both experimental and theoretical character [1-6]. 

Since the Navier-- Stokes equations governing the convection are nonlinear, analytical 
methods yield only some general laws, and a detailed study of convective motion is only fea- 
sible by employing numerical methods. 

In [7-9] numerical simulation was carried out of photoabsorptive convection in a chamber 
which is uniformly irradiated orthogonally to the lengthwise axis of the chamber. In the 
present article numerical investigation is carried out on convective motion in liquid, gases, 
or plasma which arises in a long horizontal vessel of rectangular cross section exposed to a 
laser beam of small diameter traveling along its axis. The problem had previously been con- 
sidered by us using the dimension theory [6]. It predicted the existence of three states of 
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photoabsorptive convection depending on the magnitude of the dimensionless parameter of heat 
emission q, which is proportional to the intensity of the laser beam. 

The characteristic velocity of convective motion due to laser heating is given by the 
relation V = C(Pr)q N where the convection constant C(Pr) and the convection exponent N, (N = 1 
1/2, 1/3) are modified with the growth of q in the transition from one state to another. 

In the present article this relation is obtained by numerically solving the complete 
system of Navier-- Stokes equations in their Boussinesq approximation. The values of the 
convection constants C(Pr) are determined, which cannot be done by using the similarity con- 
cepts; also determined is their dependence on the geometrical factor L/a, the ratio of the 
chamber linear dimension L to the radius a of the laser beam. The latter enables one to 
specify more accurately the hounds for the existence of these states. The temperature field 
and the velocity field of a steady convective motion have their own special qualitative features 
for each of the three states. It is characteristic that in the numerical experiments for 
large values of the heat-emission parameter q = 10 9 a large number of secondary vortices 
appear, whichpoints to the possibility of turbulence of the convective flow in the case of 
steady heating by radiation of this intensity. 

In the second part of the article the results will be given of a numerical investigation 
of the procedure of setting up in time of convective flows and temperature. 

2. Formulation of the Problem 

The convective motion due to the absorption of laser radiation in an elongated vessel 
of rectangular section, the radiation being propagated parallel to the vessel axis (z axis), 
is obtained experimentally. With flow velocities much lower than the sound velocity in this 
medium and with small vertical dimension H of the flow region (H << RT/~g) the gas density 
changes only slightly and the heat dissipation is slight. The compression work can, there- 
fore, be neglected and the density can be regarded as constant with the exception of the con- 
tribution of density changing into buoyancy force. In this case the motion of a viscous and 
heat-conducting gas (liquid) is governed by the system of the Navier--Stokes equations in 
the Boussinesq approximation [6]: 

. . . . .  VP + vAV + LSg (T - -  To). Ot P0 (i) 

OT ~_ (Vv) T ---- zAT  ~ ~176 [ (r/a), div T~ = 0, - -  ; 

Ot 9oCv 

where p = P -- Oo(g~) is the Boussinesq quaslpressure; f(r/a) is a "function which character- 
izes the intensity profile of the laser beam of radius a. 

In carrying out the computations it was assumed that the vessel length exceeds many 
times its cross section; thus, the effect of the ends is small and the heating by laser ra- 
diation is uniform along the axis (this takes place if a small part of the beam energy is ab- 
sorbed, az << !). Under these assumptions and by taking into account that the velocity along 
the vessel axis is assumed to vanish our problem becomes two-dimensional. 

By introducing the stream function ~ such that V x = ~/~y, Vy =--~/~x, and ~ = rotV = 
(0, O, m) Eqs. (I) become more suitable for numerical work after their dimensionless quanti- 
ties have been introduced: 

010 ) 0(0,) co ~ =A(o-4--- 
ax (2)  

OT , 0 0 t  " Ox ( O-~v Tl--O-yyO ( O,_~x T) = p---/'] AT +qf(x, y), o,=--A,. 

The dimensionless quantities in (2) and in our further considerations are denoted by 
the same letters as the corresponding dimensional ones and to avoid confusion a tilde is put 
over them. 

We adopted as independent dimensions L, the width of the vessel, v and 8; the dimen- 
sional and dimensionless quantities are related by the following: 

7 =  r/L; f = x/L; y = y/L; t = tv/L2; 6 = L2w/v; 
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Fig. 2. Principal parameters of photoabsorntive 
convection versus heat release q: a) Pr = i; 
a/L = 0.i; H/L = i; b) Pr = 20; a/L -= 0.i; H/L= I. 

3. Steady Convective Motion 

The steady-state solution of the equations was found by the adjustment method. At the 
initial state the fluid velocity in the vessel is zero and the temperature is uniform: T = 
To. 

In Fig. i the field velocities, the isotherms, and the streamlines are shown for the 
three characteristic values of q. 

The arrow lengths on the map of the velocity field are proportional to the Velocity vec- 
tors, the scaling proportionality coefficient being selected for each graph so that the ar- 
rows do not intersect. 

The values of the level lines for ~ and T are selected automatically, the basic level 
lines being equidistant: 

T* 
~,~ = ~ + + ~ * - - ~ + n ( n =  1 . . . . .  10); T,~-- 1z(rz== 1 . . . . .  9). 

.11 10 

The b i g g e r  c r o s s e s  show t h e  maximum (x)  o r  t h e  minimum (+) o f  a f u n c t i o n i a n d  t h e  s m a l l -  
e r  c r o s s e s  t h e  l o c a l  maxima o r  m i n i m a  w h i c h  c a n  be  s e e n  f r o m  t h e  a d d i t i o n a l  l e v e l  l i n e s  (n = 
11-16). 

In Fig. 2 some characteristic parameters of convection are shown in the logarithmic 
scale versus the heat release q. The marks on the curves show these values of q for 
which computations have been carried out. 

The larger or smaller marks + show the curves of velocity V ~ or of temperature T o , re- 
spectively, on the laser beam axis, and the curves which adjoin them closely above correspond 
to the maximal values of velocity or temperature in the flow field V*, T*. The displacement 
graphs of the velocity Ay V or temperature Ay T maxima" relative to the beam axis are shown by 
large or small squares both given in the ordinary scale. The mark • shows the maximum of 
the stream function 4" which characterizes the amount of fluid from the beam in a unit of 
time. 
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TABLE i 

pr a/L C, C2 C~ 

1 
1 

20 
0,05 

0,1 
0,05 
0,1 
0,1 

3,5.10-~ 
I , l .10-s  
7.2.10-4 
1,7. I0 -6 

mUsing 
mUsing 
3.10-= 

not available 

0,46 
0,46 
0,46 
0.46 

3.1. Weak Convection. To the state of weak convection in Fig. 2 there corresponds an 
initial region of q values for which the following linear relation holds: 

V --= C~ (Pr) q, (5)  

where V is the characteristic convection rate. The convection constant Ct (Pr) obtained by 
means of numerical experiments in the range 10 -2 ~ Pr ~ 104 has proved to be directly pro- 
portional to the Prandtl number (Table I). It is also noticed that if the beam radius is 
adopted for the scale length VRe = C1qRe, then C1(Pr) = Cx(L/a) ~ ~ Pr. The upper bound of 
this state for Pr = 20 is given by q ~ 102-103; for Pr = i it is q ~ 10s; for Pr = 0.05 it 
is q ~ 107 , which is in good agreement with the results of the dimensional analysis in [6] 
(for a thin ray with a/L = 0.5 for Pr = I the limit of the state is q ~ 106; however, the 
lowering of the beam radius has to be taken into account and this introduces a multiplier of 
2-~). Numerical experiments have shown that in the weak-convectlon state the structure of 
convective motion is virtually independent of Pr, q, or L/H, and only its intensity varies. 
The isotherms are almost ' circular in this state (see Fig. i). This indicates that the ve- 
locity field exerts no effect on the heat dissipation from the zone of heat release, which 
is a particularly distinctive feature of this state, as noted in [6]. 

The problem of weak convection in a circular cylinder of radius R was solved in [ii] 
with the aid of the following equations: 

v2T = - -  q Pr  exp ( - -  r2/a2), 

aT 
V4~ = - -  cos 

Or 
(where r and ~ are polar c-ordlnates), which can be obtained from Eqs. 
hand sides vanish. The respective solutions are given by [see Eq. (3)] 

qRePr Ei -- r 2 ) - 2 1 n  --r --Ei -- (8) 
T " e =  4 . -a -~ . R - ~  ' 

qRePr 1(~+ l r z 

1 +  exp i___~ _ 1  

+ 2r/a + "41 a + Aa~ cos% (9) 

where 

(6) 

(7) 

(2) by making the l e f t "  

A 2 : = - ~  2 In  - - E l  - - - ~ -  -r  2 t R ) 4  

From the expression (9) for the stream function one can easily obtain the convection 
rate at the point (r, @) by employing the relation 

Vr- 1 O~ Vw O~ 
r O(p Or 

(lo) 

(11) 
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) 

Fig. 3. Beam trajectories in a vessel with 
light-absorbing convection (convection in 
vertical plane normal to the diagram): a) 
weak convection q = i00; Pr = i; b) full 
convection q = 10'2; Pr = i. 

For example, on the beam axis (r = 0) one has 

1 - -  e x p  ( - -  R Z / a  z) 0 . 5 7 7 2  . . . ]  ; ( 1 2 )  

(R io )  ~ ] 
hence it can be seen that for weak convection its rate depends on the ratio of the radius of 
the vessel and of the beam; this can also be seen in the numerical experiments (see Table I). 
By setting R = L/2 one obtains from (12) in the case of R/a >> i [by employing (3)] that 

8az ( 
V ~' I I I ~] P [ ~ ~ [ 1 1 - -  I n  - L 2  ~ ] (13) 

256 L~ [ L~ 4a~ /] 
Substituting in (13) L/a = I0 and 20, Pr = I, one finds for the convection constant the values 
C, = 4.10 -5 and 10 -5 , whichare in good agreement with the results of numerical computations 

(Table I). 

3.2. Moderate Convection. In accordance with the assessment of [6] the s~ate of moder- 
ate convection with the characteristic formula 

V =: Cz(Pr)q 1/2 (14) 

can be observed in fluids or plasma with Pr ~ i. In the numerical experiments this state was 
maintained only for liquids (Pr = 20) but it was not observed in media with Pr << 1 with var- 
ious values of L/a, H/L, Pr. No explanation could be found for this phenomenon. One could 
assume that the absence of a relation of the type (14) in the numerical experiments could be 
related to the effect exerted by the walls [since (14) was obtained for unbounded space] 
though the calculations with a/L = 0.025 on the 41 x 41 grid did not confirm it; it is likely, 
however, that an even thinner laser beam might be necessary. It is also possible that the 
absence of this state could be due to considerable artificial viscosity of the adopted 
difference scheme. Indeed, according to [6], in the state of moderate convection in plasma 
the convective terms dominate the viscous terms. Artificial viscosity can disturb this 
balance. Nevertheless, a negative result on a denser grid casts some doubt since for smaller 
steps of the grid schematic viscosity becomes lower. 

It may prove expedient to employ a scheme with a small artificial viscosity, although these 
schemes make the computations for large q impossible. For Pr = 20 the moderate convection 
state takes place for the range of the values 105 ~ q ~ 109 , whichagrees with the results 
of the dimensional analysis [6]. For Pr = 20 the coefficient of proportionality is equal tO 
C2 = 3"10 -2 In this state a progressive distortion of the isotherms takes place due to the 
velocity field. The maxima of temperature and velocity are displaced upward from the beam 
center. The displacement of the velocity maximum takes place since the heat is carried away 
convectively; this results in considerable horizontal gradients of temperature above the 
beam axis which produce a further fluid acceleration. Appreciable horizontal temperature 
gradients set in earlier for smaller thermal conductivity (larger Pr) and for narrower beams. 
Consequently, the displacement of the maximal velocity should start sooner and be greater 
for large Pr and for narrower beams; this agrees with the results obtained from the 
computations. The displacement of the temperature maximum occurs since the gas is heated 
by the beam with a nonvanishing cross-sectional area; if the gas motion is sufficiently strong 
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and heat conduction is small, then the amount of heat carried away from the fluid by heat 
conduction is smaller on the laser beam periphery than the energy of the absorbed radiation, 
and the temperature of the gas arriving from the axis continues increasing though very slowly. 
For Pr = 20 (Fig. 2) an interesting feature can be seen: Ay T becomes nonmonotonic on some 
portion. The displacement of the maximum is greater than that of Ay T in the other alterna- 
tives. The latter takes place since with low heat conduction even very weak heating can ex- 
ceed the heat loss and the fluid temperature increases due to the absorption in the tail of 
the Gaussian profile. If there is further rise in q, then a reduction of Ay T is due to 
the fact that if the convective motion is strengthened, the role of heat conduct• is re- 
duced and also the effect of the Prandtl number appears to be insignificant in the transition 
to full convection. 

3.3, Full Convection. With a further increase in heating the convection also increases. 
A state of full convection arises which is characterized by the rule 

V =C~q '13 (15) 

As predicted in [6], the coefficient in the formula (15) is independent of Pr and it is equal 
to Cs = 0.46 if one adopts V* for the characteristic velocity, and it is equal to C3 = 0.23 
if V =V ~ . The lower bound for the full-convection state is higher by 3-4 orders of magnitude than that 
obtained from the dimensional analysis; in the latter, one sets the convection constants C N 
equal to unity [6]. Nevertheless, the bound for this state depends strongly on the ratio of 
the constants (C2/C3)" and this explains the discrepancy. In this state the flow structure 
also depends weakly on the determining parameters of the problem. It can be seen in Fig. i 
that a strong jet of hot liquid shoots up from the beam zone and,upon hittingthe topof the ves- 
sel, forces the hot liquid downward imparting a mushroom shape to the isotherms. Close 
to the walls a boundary layer develops with high-temperature gradients (associated with 
a thickening of the isotherms) since the fluid transfers the heat to the walls only by heat 
conduction (the velocity vanishes at the walls). In the lower part of the vessel numerous 
secondary eddies arise. The fluid motion is mainly concentrated in the upper portion of the 
vessel. Obviously, for high q the flow in the vessel must become turbulent; nevertheless, 
the obtained stationary flows can be regarded as averaged over time if for the coefficients 
of viscosity and heat conduction one adopts their Value for turbulent flows. 

In the full-convection state the displacements Ay V and Ay T are independent of q as soon 
as they reach their limiting values: Ay T is bounded by the beam radius and the increase in 
Ay V is hindered by the presence of the flow. In a higher vessel Ay V can be significantly 
larger. 

Using the results described above of the numerical experiments as a basis one is able to 
conclude that the dimensional analysis of the Navier-- Stokes equation [6] predicts suffi- 
ciently well the main features of the photoabsortive convection. At the same time, the nu- 
merical experiments enable one to improve the accuracy of the results and to reveal additional 
important aspects of convection, for example, the appearance of secondary eddies. 

The obtained states differ also as regards the deformation character of the beam in the 
thermodynamic lens guided by the beam. In Fig. 3 beam trajectories are shown (the deviations 
of the rays are magnified i00 times) which lie in the axial vertical section of the laser 
beam passing through the absorbing medium. The ray trajectories were obtained by numerical 
integration of the equation of the geometrical optics, 

y,, _ I@(Y')2 [ OT y, OT ] On 
n(r) -~g ~x OT (16) 

where  y ( x )  i s  t h e  r a y  t r a j e c t o r y ;  n(T)  = 1 + (no -- 1 ) (To /T)  i s  t he  r e f r a c t i o n  i ndex  o f  t he  
medium. The v e r t i c a l  c u r v e  i s  t h e  p r i n c i p a l  o p t i c a l  s u r f a c e  o f  t h e  l e n s .  I t  can  be seen  
t h a t  i n  t h e  c a s e  o f  weak c o n v e c t i o n  ( F i g .  3a) t he  l a s e r  beam o n l y  w i d e n s ,  t h i s  b e i n g  accom- 
p l i s h e d  s y m m e t r i c a l l y  r e l a t i v e  t o  t h e  beam a x i s ,  wh ich  r ema ins  a s t r a i g h t  l i n e .  For  f u l l  c o n -  
v e c t i o n  ( F i g .  3b) t h e  l a s e r  beam i s  d i s t o r t e d  w i t h o u t  symmetry ,  t he  d e f o r m a t i o n  o f  t h e  beam 
a x i s  t a k i n g  p l a c e  t o  meet  t h e  c o n v e c t i v e  f l ow .  Th i s  phenomenon was a l s o  o b s e r v e d  e x p e r i m e n -  
t a l l y  [2,  12 ] .  

NOTATION 

q = uIoLSSg/poCp~ s, dimensionless heat emission due to absorption of laser radiation; 
u, absorption coefficient; Io, intensity on the axis of a laser beam; L and H, width and 
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height of the vessel; To, initial temperature of the medium; Po, density at T = To; P, pres- 
sure; p, Boussinesq quasipressure; X = k/poCp, thermal-diffusivity coefficient; k, thermal- 
conductivity coefficient: v, kinematic viscosity coefficient; Cp, specific heat at constant 
pressure; B, heat expansion coefficient; g, gravitational acceleration; V = (Vx, Vy, 0), 
velocity vector; R, universal gas constant; ~, molecular weight; a, laser beam radius; ~, 
stream function; m, vortex; qRe = (~loaSBg)/(poCpV3), TRe = [Bg(T -- To)a3]/v 2, VRe = Va/v, 
dimensionless quantities with a as the length scale; Pr, Prandtl number; Ayv, AYT, displace- 
ment of maxima of velocity or temperature from beam axis; V*, T*, ~*, maximal values of ve- 
locity, temperature and stream function; r, ~, polar coordinates; V ~ T o , values on the 
ray axis, n, medium refraction index. 
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NONLINEAR STABILITY OF MOTION OF VISCOUS LIQUID BETWEEN 

CONCENTRIC ROTATING CYLINDERS 

E. A. Romashko UDC 532.527.2 

The nonlinear stage of the growth of perturbations in the hypercritical region is 
investigated in the case of a viscous liquid motion in the gap between two rotat- 
ing cylinders by using the balance method for perturbation energy. 

The stability problem of motion of a viscous liquid in the gap between two rotating cyl- 
inders has a special place in the theory of hydrodynamic stability. First, the instability 
of the rotatory Couette flow is one of the two original types of hydrodynamic instability 
presented by a simple kind of motion. Second, there are available extensive and sufficiently 
reliable experimental data for this problem; this is especially important when solving a non- 
linear problem since in this case the only test of the authenticity of the theoretical con ~ 
clusions is their agreement with the experimental results. 

The linear stability theory of liquid motion for the system under consideration is well 
known [i]. We shall not dwell on surveying the literature on this subject but shall only 
mention that in [2, 3] it was rigorously demonstrated that for suitably high Reynolds num- 
bers the Couette circular motion is unstable. In [4, 5] it was shown that in the linear 
theory, which is limiting in the sense of the ratio of the radii and the ratio of the cylinder 
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